
Adaptive isogeometric analysis based on locally refined Tchebycheffian
B-splines

Krunal Ravala,∗, Carla Mannia, Hendrik Speleersa

aDepartment of Mathematics, University of Rome Tor Vergata, 00133 Rome, Italy

Abstract

We introduce locally refined (LR) Tchebycheffian B-splines as a generalization of LR B-splines from the
algebraic polynomial setting to the broad Tchebycheffian setting. We focus on the particularly interesting
class of Tchebycheffian splines whose pieces belong to null-spaces of constant-coefficient linear differential
operators. They offer the freedom of combining algebraic polynomials with exponential and trigonometric
functions with any number of individual shape parameters and have been recently equipped with efficient
evaluation and manipulation procedures. We consider their application in the context of isogeometric anal-
ysis and discuss related adaptive refinement, adopting the so-called structured mesh refinement strategy,
widely used and analyzed in the classical polynomial case.
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1. Introduction

Tensor-product B-splines are probably the most well-known multivariate spline basis functions. They
have been profitably applied in different contexts including geometric modeling, approximation theory, and
numerical simulation. Their popularity roots in their simple, elegant, and efficient construction: they are
nothing but tensor products of univariate B-splines; see, e.g., [21, 32] and references therein.5

The tensor structure of the underlying mesh, however, is the major weakness of tensor-product B-splines
as it hinders adequate local refinement, forcing the use of unnecessarily large discrete spaces and leading
to a significant loss in efficiency. This has been seen as a severe limitation in the context of isogeometric
analysis, which aims to simplify the interoperability between geometric modeling and numerical simulation
by constructing a fully integrated framework for computer-aided design and finite element analysis; see,10

e.g., [10, 15]. Adaptive local refinement strategies are essential in isogeometric analysis, in order to achieve
small approximation error while keeping the computational cost low.

To overcome this limitation, in the last decades many alternative spline technologies have been devel-
oped for so-called T-meshes. Such meshes are still axis-aligned but T-vertices are allowed in the interior of
the domain, in order to support local refinement, while preserving locally the simplicity of the tensor ap-15

proach; see [35] and references therein. T-splines [36], (truncated) hierarchical B-splines [13], PHT-splines
[11], and locally refined (LR) B-splines [12] are popular examples of such spline technologies. All these
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approaches have their own strengths (and weaknesses) depending on the context they are intended to be
used.

The definition of LR B-splines is inspired by the knot insertion refinement process of univariate (and20

tensor-product) B-splines. Their formulation bears a large similarity to classical tensor-product B-splines
and this makes them one of the most elegant extensions of univariate B-splines towards T-meshes. Since
their introduction in [12], LR B-splines have found interesting applications in several contexts ranging from
data approximation [20, 37] to numerical simulations [17, 18], also considering their rational version [41].
More theoretical aspects, mainly related to the issue of linear and local linear independence and related25

adaptive refinement strategies, have been investigated in [7, 28, 29, 30]. A comparison between LR B-
splines, hierarchical, and truncated hierarchical B-splines can be found in [19], while combinations of the
LR B-spline framework with the hierarchical approach have been explored in [8, 40].

Univariate Tchebycheffian splines are smooth piecewise functions whose pieces are drawn from (possi-
bly different) extended Tchebycheff (ET-) spaces. Any non-trivial element of an ET-space of dimension p+130

has at most p zeros, counting multiplicity. ET-spaces are natural generalizations of algebraic polynomial
spaces [22, 26, 34]. Extended complete Tchebycheff (ECT-) spaces [22, 31] are a particularly interesting
subclass of ET-spaces enjoying some additional useful properties, such as the possibility of defining so-
called generalized power functions, which can be regarded as a natural extension of the monomial basis
functions for algebraic polynomials. Relevant examples are null-spaces of linear differential operators on35

suitable intervals [22, 31]. From now on we will focus only on ECT-spaces.
Most of the results known for polynomial splines extend in a natural way to the Tchebycheffian setting.

In particular, under suitable assumptions on the involved ECT-spaces, Tchebycheffian splines admit a repre-
sentation in terms of basis functions, called Tchebycheffian B-splines (TB-splines), which enjoy almost all
the properties that make polynomial B-splines popular and successful, such as local linear independence,40

minimal support, non-negativity, and partition of unity. Unfortunately, TB-splines in their most general-
ity still lack practical algorithms for their evaluation and manipulation. This almost nullifies their great
applicative potential.

On the contrary, for the subclass of TB-splines with pieces belonging to ECT-spaces that are null-spaces
of constant-coefficient linear differential operators, manipulation routines have been recently developed and45

made publicly available in a Matlab toolbox [38], based on the results in [14]. As a consequence, thanks to
their structural similarity and plug-to-plug compatibility with classical polynomial B-splines, they can be
easily incorporated in any software library supporting polynomial B-splines. This subclass of TB-splines
provides a large variety of combinations of algebraic polynomial, exponential, and trigonometric functions
equipped with a wide spectrum of shape parameters. They allow for an exact representation of profiles of50

interest in applications (such as conic sections), they behave nicely with respect to differentiation and inte-
gration and, by construction, they include fundamental solutions of certain differential operators. Therefore,
they offer a valid alternative to classical polynomial B-splines (and their rational extension NURBS) in iso-
geometric Galerkin methods. As illustrated in the analysis presented in [31], it turns out that tensor-product
TB-splines can outperform tensor-product polynomial B-splines in isogeometric Galerkin methods when-55

ever appropriate problem-driven selection strategies for the underlying ECT-spaces are applied.
The structural similarity between ECT-spaces and algebraic polynomial spaces also enables us to ex-

tend popular local refinement technologies, based on local tensor products, towards the Tchebycheffian
setting. Tchebycheffian spline spaces over T-meshes have been introduced in their full generality in [5].
The structure of ECT-spaces has been exploited in [6] to fully extend the dimension study carried out in60

the polynomial case in [27]. Some earlier generalizations of the polynomial setting towards particular
Tchebycheffian spline spaces or peculiar T-meshes have been considered in [2, 3, 4, 25]. In particular, [4]
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outlines the construction of so-called generalized splines (a special instance of Tchebycheffian splines) on
LR-meshes.

In this paper, we define LR TB-splines as a generalization of LR B-splines and we analyze their per-65

formance in the context of adaptive isogeometric analysis. The definition of LR TB-splines is driven by
the knot insertion refinement process of tensor-product TB-splines, in complete analogy to the polynomial
setting. In the bivariate tensor case, inserting a new knot in a pair of (global) knot vectors results in inserting
a line segment in the mesh crossing the entire domain, thus refining all the TB-splines whose supports are
crossed. On the contrary, LR TB-splines are defined on local knot vectors, and consequently the inser-70

tion of a new knot is always performed with respect to a particular LR TB-spline and results in refining
only few basis functions. The theoretical construction of LR TB-splines is independent of the particular
ECT-spaces where the various pieces are drawn from. However, in the applicative context we confine our-
selves to Tchebycheffian splines identified by ECT-spaces that are null-spaces of constant-coefficient linear
differential operators containing constants because:75

• they already grant the freedom of combining algebraic polynomials with exponential and trigonomet-
ric functions with any number of individual shape parameters;

• when the various pieces are drawn from a single ECT-space, the existence of TB-splines is always
ensured, possibly with some restriction on the partition; see [31, Section 2.4];

• the corresponding TB-splines are supported by the Matlab toolbox available in [38].80

The remainder of the paper is divided into five sections. Section 2 summarizes the definition and main
properties of Tchebycheffian splines, with a particular focus on TB-splines and knot insertion. Section 3
details and illustrates the construction of LR TB-splines. In Section 4 we consider their use in the isogeomet-
ric Galerkin method and discuss related adaptive refinement. Section 5 collects various numerical results,
showcasing the performance of adaptive isogeometric analysis based on LR TB-splines for the solution of85

few classical benchmark differential problems. We end in Section 6 with some concluding remarks.
Throughout the paper, we assume the reader to be familiar with the definition and main properties of

univariate polynomial B-splines, in particular with the knot insertion procedure; see, e.g., [21].

2. Tchebycheffian splines

Tchebycheffian splines are smooth piecewise functions with pieces drawn from (possibly different)90

extended Tchebycheff (ET-) spaces glued together with prescribed smoothness. ET-spaces, and more pre-
cisely their important subclass of extended complete Tchebycheff (ECT-) spaces, are natural generaliza-
tions of algebraic polynomial spaces. The focus of this paper will be on a large class of ECT-spaces given
by the null-spaces of linear differential operators with real constant coefficients on suitable intervals; see
[34, 38, 31]. In this section, following the presentation and the notation from [31, Section 2], we briefly95

recollect the definition and some properties of Tchebycheffian splines. In particular, we discuss their rep-
resentation, whenever it exists, in terms of Tchebycheffian B-splines (TB-splines), which are B-spline like
basis functions for Tchebycheffian spline spaces. We refer the reader to [34, 22] for in-depth information
about Tchebycheffian splines.

2.1. Extended Tchebycheff spaces from null-spaces of linear differential operators100

We start by defining our Tchebycheff spaces of interest.
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Definition 1 (Extended Tchebycheff space). Given an interval J and an integer p ≥ 0, a space Tp(J) ⊂
Cp(J) of dimension p + 1 is an extended Tchebycheff (ET-) space on J if any non-trivial element of Tp has
at most p roots in J, counting multiplicity.

This definition shows a strong connection between ET-spaces Tp and the space Pp of algebraic poly-105

nomials of degree less than or equal to p. This relation is even further strengthened when considering the
following important subclass of ET-spaces.

Definition 2 (Extended complete Tchebycheff space). An ET-space Tp(J) is an extended complete Tcheby-
cheff (ECT-) space on J, if there exist functions g0, . . . , gp such that Tp(J) = 〈g0, . . . , gp〉 and every subspace
〈g0, . . . , gk〉 for k = 0, . . . , p is an ET-space on J. The basis

{
g0, . . . , gp

}
is called an ECT-system.110

The functions g0, . . . , gp in Definition 2 can be regarded as a natural extension of the monomial basis
functions for algebraic polynomials. Due to the above similarities, we will refer to the integer p ≥ 0 as the
degree of an ECT-space Tp, in analogy to the space Pp of algebraic polynomials.

In this paper we are focusing on the subclass of ECT-spaces given by the null-spaces of linear differential
operators with real constant coefficients. Such a differential operator is defined by115

Lp f B Dp+1 f +

p∑
j=0

a jD j f , f ∈ Cp+1(R), a j ∈ R, j = 0, . . . , p, (1)

and its characteristic polynomial by

pp(ω) B ωp+1 +

p∑
j=0

a jω
j. (2)

The null-space of the differential operator in (1) is fully identified by the roots of pp in (2). We assume that
ω = 0 is a root, in order to ensure that the constants belong to the null-space. Let us denote all the different
roots of pp by ωk = αk + iβk (αk, βk ∈ R and i B

√
−1), with ω0 = 0, and their multiplicity by µk ≥ 1 for

k = 0, . . . ,M such that
∑M

k=0 µk = p + 1. Then, the corresponding null-space is uniquely characterized by120

the following vector with p + 1 − µ0 components:

W B
(
ω1, . . . , ω1︸        ︷︷        ︸

µ1 times

, ω2, . . . , ω2︸        ︷︷        ︸
µ2 times

, . . . , ωM, . . . , ωM︸          ︷︷          ︸
µM times

)
, (3)

and can be denoted by
PWp B P(α1+iβ1,...,α1+iβ1,α2+iβ2,...,α2+iβ2,...,αM+iβM)

p . (4)

If the polynomial in (2) has solely real roots, then the null-space is an ECT-space on the whole real line,
and in particular on any bounded interval [a, b]. On the other hand, if the characteristic polynomial has also
complex roots, then it is only an ECT-space on sufficiently small intervals.125

Remark 3. Let ω = α + iβ be a root of multiplicity µ ≥ 1 of the polynomial in (2). This root gives rise to
the following fundamental subspace:

• if β = 0, then 〈
xkeαx : k = 0, . . . , µ − 1

〉
⊆ PWp ;

• if β , 0, then the complex conjugate of ω is also a root of multiplicity µ, and〈
xkeαx cos(βx), xkeαx sin(βx) : k = 0, . . . , µ − 1

〉
⊆ PWp .

4

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4761823

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed



The collective subspaces mentioned above, corresponding to all the roots, constitute the null-space PWp of
the considered differential operator.

In this paper we are considering the comprehensive subclass of ECT-spaces described by130

Tp = P(α1,...,α`,iβ1,−iβ1,...,iβq,−iβq)
p =

〈
1, x, . . . , xp−`−2q, eα1 x, . . . , eα`x, cos(β1x), sin(β1x), . . . , cos(βqx), sin(βqx)

〉
,

(5)
where 0 ≤ ` ≤ p and α1, . . . , α` ∈ R with αi , α j for each i , j; and 0 ≤ 2q ≤ p − ` with β1, . . . , βq ∈ R
and βi , β j for each i , j. The class in (5) grants the freedom of combining algebraic polynomials
with exponential and trigonometric functions by choosing a wide range of shape parameters in (3). An
extensive study on the selection of the individual shape parameters, according to an automatic problem-
driven strategy, can be found in [31]. Here we limit ourselves to recall few particular selections of these135

shape parameters, which result into familiar ECT-spaces.

• Algebraic polynomial spaces Pp =
〈
1, x, . . . , xp

〉
are the most established ECT-spaces.

• Generalized polynomial spaces enrich algebraic polynomial spaces by a pair of functions [22, 23].
Important cases of generalized polynomials can be obtained by taking M = 2 and µ1 = µ2 = 1 in (3).
In particular, when selecting ω1 = α, ω2 = −α we get the following null-space,140

P(α,−α)
p =

〈
1, x, . . . , xp−2, eαx, e−αx

〉
=

〈
1, x, . . . , xp−2, cosh(αx), sinh(αx)

〉
, p ≥ 2; (6)

while setting ω1 = iβ, ω2 = −iβ results in the following null-space,

P(iβ,−iβ)
p =

〈
1, x, . . . , xp−2, cos(βx), sin(βx)

〉
, p ≥ 2. (7)

We note that the space (6) is an ECT-space on any interval. On the contrary, the space (7) is only an
ECT-space on a sufficiently small interval. It can be shown that any closed interval of length less than
2π
β is valid; see [31, Section 2.1] and references therein for further details.

2.2. Tchebycheffian spline spaces145

Analogous to polynomial splines, Tchebycheffian splines are piecewise functions with pieces belonging
to ECT-spaces and ensuring specific prescribed smoothness. Let M be a mesh of the interval [a, b] ⊂ R
defined by

M B {a =: x0 < x1 < · · · < xm−1 < xm B b}. (8)

For i = 1, . . . ,m let Tp,i be an ECT-space of dimension p + 1 on the closed interval [xi−1, xi] and consider
the sequence of m − 1 integers

r B
{
ri ∈ Z≥0 : 0 ≤ ri ≤ p − 1, i = 1, . . . ,m − 1

}
.

Then, the Tchebycheffian spline space Sr
p(M) of degree p and smoothness r on the mesh M, associated

with the ECT-spaces Tp,i, is defined by

Sr
p(M) B

{
f : [a, b]→ R : f |[xi−1,xi] ∈ Tp,i, i = 1, . . . ,m;

Dl
− f (xi) = Dl

+ f (xi), l = 0, . . . , ri, i = 1, . . . ,m − 1
}
.

For the sake of simplicity, in this paper we confine ourselves to select all the pieces of the spline space
from a single space Tp as in (5). We assume that Tp (and its derivative space) is an ECT-space on each150
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interval [xi−1, xi] separately, but not necessarily on the entire interval [a, b]. As it will be shown in the
rest of the paper, also in this simplified setting, the framework we are dealing with is very rich and offers
enough flexibility to allow a proper treatment for a wide class of problems. Moreover, we assume maximal
smoothness at the internal breakpoints in the partition, i.e., r B {p−1, . . . , p−1}, and we drop the smoothness
r from the notation of the Tchebycheffian spline space. Thus, the Tchebycheffian spline space Sp(M) of155

degree p where all the pieces are drawn from the space Tp and glued with maximal smoothness on a partition
M is given as

Sp(M) B
{
f : [a, b]→ R : f |[xi−1,xi] ∈ Tp, i = 1, . . . ,m;

Dl
− f (xi) = Dl

+ f (xi), l = 0, . . . , p − 1, i = 1, . . . ,m − 1
}
.

(9)

2.3. Tchebycheffian B-splines

In the particular case Tp = Pp, the space in (9) admits a special basis formed by the so-called B-splines.
This basis allows for an efficient representation, evaluation, and manipulation of the elements in the space.160

Under suitable assumptions on the ECT-space Tp, the spline space in (9) admits a set of basis functions
which enjoy all the main properties of B-splines and therefore are called Tchebycheffian B-splines (TB-
splines). In the rest of the paper we assume that the space (9) admits a TB-spline basis. We refer the reader
to [31, Section 2.4], and references therein, for a detailed discussion about the existence and definition of
such a basis. Here we limit ourselves to recall the main properties of TB-splines.165

Like in the polynomial B-spline case, the set of TB-splines of the space in (9) can be defined using a
vector of non-decreasing (open) knots,

Ξ B (ξk)n+p+1
k=1 B

(
x0, . . . , x0︸      ︷︷      ︸

p+1 times

, x1, . . . , xm−1, xm, . . . , xm︸       ︷︷       ︸
p+1 times

)
, (10)

with n := m + p being the dimension of the Tchebycheffian spline space Sp(M), and any TB-spline NΞk ,p :
R→ R of degree p can be uniquely identified by a local knot vector of length p + 2,

Ξk B (ξk,1, . . . , ξk,p+2),

where ξk,1, . . . , ξk,p+2 are consecutive knots in (10). TB-splines possess a complete structural similarity to
polynomial B-splines. The next proposition collects some properties related to our Tchebycheffian spline
spaces of interest. The listed properties, however, remain valid under much more general assumptions; see170

[14, 22, 34] and references therein.

Proposition 4 (TB-spline properties). Let Sp(M) := {NΞk ,p : k = 1, . . . , n} be the set of all TB-splines
defined on the sequence of knots (10) and related to the space Sp(M) in (9), with Tp as in (5). The following
properties hold for NΞk ,p (see Figure 1).

• Non-negativity: NΞk ,p(x) > 0 for all x ∈ (ξk,1, ξk,p+2).175

• Local support: supp(NΞk ,p) = [ξk,1, ξk,p+2], hence NΞk ,p(x) = 0 for all x < [ξk,1, ξk,p+2].

• Partition of unity:
∑n

k=1 NΞk ,p(x) = 1 for all x ∈ [a, b].

• Local linear independence: the set {NΞk ,p}
i+p
k=i forms a basis of Tp on [xi−1, xi] for all 1 ≤ i ≤ m.

6
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0 1/3 2/3 1
0

0.2

0.4

0.6

0.8

1

Compact support

Partition of unity

Figure 1: Illustration of TB-spline properties.

• Interpolation at end-points:

NΞ1,p(a) = 1, NΞk ,p(a) = 0, k = 2, . . . , n;

NΞn,p(b) = 1, NΞk ,p(b) = 0, k = 1, . . . , n − 1.

When m = 1, the meshM has no interior breakpoints and the corresponding TB-splines reduce to the
Tchebycheffian counterpart of Bernstein polynomials, called Tchebycheffian Bernstein functions. Some180

examples of Tchebycheffian Bernstein functions for different ECT-spaces are depicted in Figure 2.

2.4. Knot insertion

Similar to polynomial splines, we can represent a Tchebycheffian spline on a refined knot sequence by
inserting a single knot at a time. This follows from the following proposition; see, e.g., [22, Section 3.4] for
a proof. We use the notation (ξ1, . . . , ξ̂, . . . , ξq) to indicate the knot vector that is obtained after adding the185

knot ξ̂ to the knot vector (ξ1, . . . , ξq) and this implicitly assumes that the resulting vector is in non-decreasing
order. In particular, if ξ̂ < ξ1 then ξ̂ will be the first item of the vector, or if ξ̂ > ξq then it will be the last
item of the vector.

Proposition 5 (Knot insertion). Let NΞk ,p be a TB-spline as in Proposition 4, identified by the local knot
vector Ξk := (ξk,1, . . . , ξk,p+2). Adding a knot ξ̂ ∈ [ξk,1, ξk,p+2] results in two TB-splines

N(ξk,1,...,ξ̂,...,ξk,p+1),p, N(ξk,2,...,ξ̂,...,ξk,p+2),p,

such that
N(ξk,1,...,ξk,p+2),p(x) = ν(1)

k N(ξk,1,...,ξ̂,...,ξk,p+1),p(x) + ν(2)
k N(ξk,2,...,ξ̂,...,ξk,p+2),p(x), (11)

with 
ν(1)

k = 0, ν(2)
k = 1, if ξ̂ = ξk,1,

ν(1)
k > 0, ν(2)

k > 0, if ξk,1 < ξ̂ < ξk,p+2,

ν(1)
k = 1, ν(2)

k = 0, if ξ̂ = ξk,p+2.

The coefficients ν(1)
k , ν(2)

k ∈ [0, 1], connecting two different scales of TB-splines, can be explicitly ex-
pressed in an analytical form involving the underlying space Tp; we refer the reader to [22, Section 3.4]

7
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(a) P3 = 〈 1, x, x2, x3 〉

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

(b) P(10,−10)
3 = 〈 1, x, e10x, e−10x 〉

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

(c) P(50,−50)
3 = 〈 1, x, e50x, e−50x 〉

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

(d) P(iπ.−iπ)
3 = 〈 1, x, cos(πx), sin(πx) 〉

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

(e) P(i 3
2 π.−i 3

2 π)
3 =

〈
1, x, cos

(
3π
2 x

)
, sin

(
3π
2 x

) 〉 0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

(f) P(50,−50,i 3
2 π.−i 3

2 π)
6 =

〈
1, x, x2, e50x, e−50x, cos

(
3π
2 x

)
, sin

(
3π
2 x

) 〉
Figure 2: Tchebycheffian Bernstein basis on the interval [0, 1] for different ECT-spaces.

for details. Alternatively, for practical purposes, they can be simply computed by solving the linear system
obtained from (11) by evaluating the two sides at any pair of distinct points x̂1, x̂2 such that

x̂ j ∈ (ξk, j, ξk,p+ j), j = 1, 2.

Example 6 (Knot insertion). Let us consider a Tchebycheffian spline space Sp(M) on the mesh M =

{0, 1, 2, 3} related to the ECT-space P(10)
2 =

〈
1, x, e10x

〉
of degree p = 2. We refine the TB-spline N(0,0,1,2),2

8
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(a) N(0,0,1,2),2 = N(0,0,1,3/2),2 +
(

eα/2

2eα/2+2

)
N(0,1,3/2,2),2

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

(b) N(0,1,2,3),2 =
(

eα/2+2
2eα/2+2

)
N(0,1,3/2,2),2 +

(
2eα/2+1
2eα/2+2

)
N(1,3/2,2,3),2

Figure 3: Inserting a knot ξ̂ = 3/2 for different TB-splines related to the ECT-space P(10)
2 =

〈
1, x, e10x

〉
. Each existing

spline is described as a combination of the refined TB-splines with their corresponding scaling factors as given in
(11).

by inserting the knot ξ̂ = 3/2. The knot insertion formula (11) gives

N(0,0,1,2),2 = N(0,0,1,3/2),2 +

(
eα/2

2eα/2 + 2

)
N(0,1,3/2,2),2.

Figure 3(a) illustrates the original TB-spline split into two new TB-splines after knot insertion. Figure 3(b)
exhibits another example where, as a result of knot insertion at ξ̂ = 3/2, the TB-spline N(0,1,2,3),2 splits as

N(0,0,1,2),2 =

(
eα/2 + 2

2eα/2 + 2

)
N(0,0,1,3/2),2 +

(
2eα/2 + 1
2eα/2 + 2

)
N(0,1,3/2,2),2.

Since we are interested in spline spaces of maximal smoothness, from now on we only consider the case190

where the inserted knot ξ̂ does not coincide with any existing knot in Ξ.

Remark 7. Let Sp(M) be the set of TB-splines spanning the Tchebycheffian spline space Sp(M) on the
meshM. From (10) it follows that the cardinality of Sp(M) equals n. Let M̂ be the refined mesh obtained
fromM by adding ξ̂ as additional breakpoint in the interior of the interval [a, b]. On this refined mesh, the
new set of TB-splines can be constructed by the following procedure.195

1. Initialize the set by Sp(M̂)← Sp(M).
2. As long as there exists N(ξk,1,...,ξk,p+2),p ∈ Sp(M̂) with ξ̂ ∈ [ξk,1, ξk,p+2] but ξ̂ < {ξk,1, . . . , ξk,p+2} :

(a) Apply knot insertion as in (11):

N(ξk,1,...,ξk,p+2),p(x) = ν(1)
k N(ξk,1,...,ξ̂,...,ξk,p+1),p(x) + ν(2)

k N(ξk,2,...,ξ̂,...,ξk,p+2),p(x).

(b) Update the set:

Sp(M̂)←
(
Sp(M̂) \ {N(ξk,1,...,ξk,p+2),p}

)
∪

{
N(ξk,1,...,ξ̂,...,ξk,p+1),p,N(ξk,2,...,ξ̂,...,ξk,p+2),p

}
.

It can be verified that the obtained set Sp(M̂) spans the (n + 1)-dimensional Tchebycheffian spline space
Sp(M̂) on the refined mesh M̂ and forms actually the TB-spline basis of this space. The above procedure is
a simplified version of the LR TB-spline construction that will be discussed in Section 3 (see Definition 13).200

9
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2.5. Multivariate setting

Let x := (x1, . . . , xd). The local representation of univariate TB-splines can be easily extended to the
multivariate case by taking their tensor product. More precisely, given degrees p := (p1, . . . , pd) and root
vectors W1,W2, . . . ,Wd as in (3), we define the multivariate TB-spline NΞk ,p : Rd → R, with local knot
vectors

Ξk B
(
Ξ1

k1
,Ξ2

k2
, . . . ,Ξd

kd

)
,

as

NΞk ,p(x) B
d∏

i=1

NΞi
ki
,pi

(xi), (12)

where NΞi
ki
,pi

is a univariate TB-spline related to the ECT-space PWi
pi of degree pi and root vector Wi as in

(4) for i = 1, . . . , d. The function NΞk ,p belongs piecewisely to the space PW1
p1 ⊗ PW2

p2 ⊗ · · · ⊗ PWd
pd and its

support is given by the Cartesian product of the supports of the local knot vectors in each direction as

supp(NΞk ,p) B [ξ1
k1,1, ξ

1
k1,p1+2] × · · · × [ξd

kd ,1, ξ
d
kd ,pd+2].

In the following we restrict our attention to the bivariate case d = 2. Expanding the concept of knot
insertion from a univariate to a bivariate TB-spline can be intuitively compared to inserting an axis-aligned
line. The sole necessary condition for the inserted line is that it must split the complete support of the
TB-spline undergoing the refinement process. The bivariate TB-spline NΞk ,p, with local knot vector

Ξk =
(
Ξ1

k1
,Ξ2

k2

)
=

(
(ξ1

k1,1, . . . , ξ
1
k1,p1+2), (ξ2

k2,1, . . . , ξ
2
k2,p2+2)

)
,

can be refined by inserting, e.g., a vertical line {ξ̂} × [ξ2
k2,1

, ξ2
k2,p2+2], with ξ̂ ∈ (ξ1

k1,1
, ξ1

k1,p1+2). Analogous to
knot insertion, the line insertion results in splitting the given TB-spline in two new TB-splines as

NΞk ,p(x) = N(ξ1
k1 ,1

,...,ξ1
k1 ,p1+2),p1

(x1)N(ξ2
k2 ,1

,...,ξ2
k2 ,p2+2),p2

(x2)

=
(
ν(1)

k N(ξ1
k1 ,1

,...,ξ̂,...,ξ1
k1 ,p1+1),p1

(x1) + ν(2)
k N(ξ1

k1 ,2
,...,ξ̂,...,ξ1

k1 ,p1+2),p1
(x1)

)
N(ξ2

k2 ,1
,...,ξ2

k2 ,p2+2),p2
(x2)

=: ν(1)
k NΞl1 ,p(x) + ν(2)

k NΞl2 ,p(x). (13)

The non-negative scaling factors ν(1)
k , ν(2)

k ∈ [0, 1] are computed in the same manner as in (11). It is clear
that the scaling relation for insertion of a horizontal line is alike.

3. TB-splines on LR-meshes205

In this section, we discuss the construction of TB-splines on locally refined meshes (LR-meshes), which
are particular axis-aligned box-partitions. First, we explore how these meshes can be obtained by means
of successive line insertion. Subsequently, we define LR TB-splines as an extension of polynomial LR B-
splines. We refer the reader to [12] for in-depth information about splines over locally refined box-partitions.
Our presentation closely follows [30, Section 2], extending to the Tchebycheff setting the concepts presented210

therein.

10
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3.1. LR-meshes
Throughout this paper we keep the description of LR-meshes limited to the bivariate case. Note that

several definitions we are going to state are simplified for an easier reading because we confine ourselves
to the case of maximal smoothness. However, the Tchebycheff setting allows for full generality as in the215

algebraic polynomial case.

Definition 8 (Box-partition and mesh). Given an axis-aligned rectangle Ω ⊆ R2, a box-partition of Ω is a
finite collection E of axis-aligned rectangles, called elements σ, such that

•
⋃
σ∈E σ = Ω,

• σ̊1 ∩ σ̊2 = ∅ for any σ1, σ2 ∈ E, with σ1 , σ2,220

where the interior of an element σ is denoted by σ̊. We define the set V consisting of all vertices from all
the elements of E as the vertices of E. A meshline γ of E is an axis-aligned segment contained in an element
edge, connecting two and only two vertices ofV at its end-points. The setM of all the meshlines γ of E is
called the mesh of E.

We can represent a meshline γ as the Cartesian product of a point in R and a finite interval. For example,225

a vertical meshline can be described as {ξ1
i } × [ξ2

j , ξ
2
j+1], while a horizontal meshline can be described as

[ξ1
i , ξ

1
i+1] × {ξ2

j }.

Definition 9 (µ-extended mesh). Given a mesh M and bi-degree p = (p1, p2), the meshline multiplicity
function µ :M 7→ Z>0 is a function that associates a positive integer with every meshline, called multiplicity
of the meshline. A mesh that has an assigned multiplicity function µ is called µ-extended mesh. The230

meshline multiplicity is assumed to be maximally pk + 1 in its corresponding direction k. A mesh M is
considered an open mesh if every boundary meshline has maximal multiplicity. Moreover, when all the
meshlines of the box-partition E have the same multiplicity µ except on the boundary of the domain, we can
say that the meshM has multiplicity µ.

In this paper we fix the multiplicity of all meshlines to one except on the boundary, where it is fixed to235

maximum. Hence, all the considered meshes will be of multiplicity µ = 1 and on the boundaries they will
be open. Figure 4 illustrates an example of a box-partition E of Ω and related µ-extended meshM.

A vertex of E is called T-vertex if it is the intersection of two collinear meshlines and a single orthogonal
meshline. A tensor mesh is a special case of µ-extended mesh, where the T-vertices occur only on the
boundaries of the domain and all collinear meshlines have the same multiplicity µ. We can describe any
bivariate tensor mesh on two knot vectors Ξ =

(
(ξ1

1, . . . , ξ
1
s ), (ξ2

1, . . . , ξ
2
t )

)
as

M(Ξ) B
{
{ξ1

i } × [ξ2
j , ξ

2
j+1] : i = 1, . . . , s; j = 1, . . . , t − 1}

∪ [ξ1
i , ξ

1
i+1] × {ξ2

j } : i = 1, . . . , s − 1; j = 1, . . . , t}
}
.

The multiplicities of the meshlines inM(Ξ) are given by the multiplicities of the knots in Ξ.

Definition 10 (Support). Given a meshM and a bivariate TB-spline NΞk ,p, we say that NΞk ,p has support
onM if240

• the meshlines inM(Ξk) can be obtained as the union of meshlines inM, and

• the multiplicities of the meshlines inM(Ξk) are less than or equal to the multiplicities of the corre-
sponding meshlines inM.

11
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3

3 3 3

3 3 3

3

3

1

1 1

1

11

σ

γ

Figure 4: A box-partition E of the domain Ω with elements σ and meshlines γ. The vertices of V are marked with
circles. The µ-extended mesh M of E for bi-degree p = (2, 2) assumes that the boundary meshlines have maximal
multiplicity (µ = 3) and all internal meshlines have a fixed multiplicity equal to µ = 1. The multiplicities associated
with all meshlines are depicted in the squares along the lines.

(a) (b) (c) (d)

Figure 5: Some supports of TB-splines of bi-degree p = (2, 2) on the given meshM in (a) with multiplicity µ = 1. The
TB-splines in (b) and (c) have minimal support onM, with their knots highlighted by thicker lines. The TB-spline in
(d) does not have minimal support onM, as the dashed line disconnects its support.

Furthermore, we say that NΞk ,p has minimal support if

• the multiplicities of the interior meshlines inM(Ξk) are equal to the multiplicities of the correspond-245

ing meshlines inM, and

• there is no collection of collinear meshlines γ inM\M(Ξk) such that supp(NΞk ,p)\γ is not connected.

Figure 5 illustrates some examples of TB-splines of bi-degree p = (2, 2) with minimal support on a
meshM with fixed multiplicity µ = 1. Note that not all TB-splines that have support onM have minimal
support onM.250

Definition 11 (Split). Given a box-partition E and an axis-aligned segment γ, we say that γ traverses σ ∈ E
if γ ⊂ σ and the interior of σ is divided into two parts by γ, i.e., σ \ γ is not connected. A split is defined
as a finite union of contiguous and collinear axis-aligned segments γ = ∪iγi such that every γi is either a
meshline of E or it traverses some σ ∈ E.

LR-meshes are meshes obtained from a tensor mesh by successively inserting (sufficiently long) splits255

and LR TB-splines are defined as a specific set of TB-splines with minimal support on an LR-mesh. When

12
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a split γ is inserted into a box-partition E, any traversed rectangle σ ∈ E is replaced with two sub-rectangles
given by the closures of the connected components of σ\γ. The resulting new box-partition will be denoted
by E+γ and its corresponding mesh byM+γ. We focus only on meshes of multiplicity µ = 1 that are open
on the boundaries. Hence, when we refine such a meshM with a split γ, the multiplicities of the meshlines260

shared by bothM andM + γ remain the same, while multiplicity one is assigned to the new meshlines in
γ.

Definition 12 (Traversal of a TB-spline). Given an open meshM of multiplicity µ = 1, a TB-spline NΞk ,p
with support onM, and a split γ, we say that γ traverses NΞk ,p if the interior of supp(NΞk ,p) is divided in
two disjoint parts by γ, i.e., supp(NΞk ,p) \ γ is not connected, and γ is inM\M(Ξk).265

3.2. LR TB-splines

At this point we have all fundamentals to construct LR TB-splines. We start with an open tensor mesh
and the corresponding set of tensor-product TB-splines. Then, we refine the mesh by inserting splits, one
at a time, and whenever a TB-spline in the considered set has no longer minimal support during the mesh
refinement process, we refine it by using the knot insertion procedure.270

Definition 13 (LR TB-splines). LetM0 be an open tensor mesh of multiplicity µ = 1 and let Sp(M0) be
the corresponding set of tensor-product TB-splines of bi-degree p (and maximal smoothness) onM0. We
then define a sequence of meshesM1,M2, . . . of multiplicity µ = 1 and a sequence of sets of TB-splines
Sp(M1),Sp(M2), . . . as follows. For j = 1, 2, . . ., let γ j be a split such thatM j =M j−1 + γ j and such that
at least one TB-spline in Sp(M j−1) is traversed by a split inM j. On this refined meshM j the new set of275

TB-splines is constructed by the following procedure.

1. Initialize the set by Sp(M j)← Sp(M j−1).
2. As long as there exists NΞk ,p ∈ Sp(M j) with no minimal support onM j :

(a) Apply knot insertion as in (13) : NΞk ,p = ν(1)
k NΞl1 ,p + ν(2)

k NΞl2 ,p.

(b) Update the set: Sp(M j)←
(
Sp(M j) \ NΞk ,p

)
∪

{
NΞl1 ,p,NΞl2 ,p

}
.280

The generated meshM j is referred to as an LR-mesh and the corresponding set Sp(M j) is designated as a
set of LR TB-splines.

Remark 14. The splitting procedure described in Step 2 of Definition 13 to construct a set of TB-splines on
the refined meshM j (obtained by inserting split γ j into meshM j−1) can be subdivided into two steps.

• Primary split: Refine any existing TB-spline whose support is traversed by γ j or by the union of γ j285

and any existing split inM j−1 that intersects and is collinear with γ j.

• Secondary split: Refine any newly created TB-spline whose support is traversed by any existing split
inM j−1.

After the primary split step, the supports of the newly created TB-splines are expected to be smaller than
the original ones. This, in turn, opens up the possibility that existing splits in M j−1 might traverse these290

new TB-splines. Therefore, the secondary split step is designed to check for this possibility. If there is
such a split, the secondary split step is executed once more, and this process continues until there are no
remaining new TB-splines that are traversed by any split inM j−1. This implementation of LR TB-splines is
summarized in Algorithm 1 in Appendix A.

13
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Remark 15. Any refinement sequence producing a given LR-meshM j is not inherently unique, as the order295

of split insertions can often be altered. Nonetheless, the set of LR TB-splines Sp(M j) is well defined onM j

because it is independent of such insertion ordering, as proved in [12, Theorem 3.4] for polynomial LR
B-splines but the proof also extends to LR TB-splines. Therefore, once the set of LR TB-splines onM j has
been constructed, it is safe to discard any data linked to the previous iteration, including the meshM j−1.

As in the polynomial case, due to the local refinement in new LR TB-splines, the partition of unity300

property is lost. This property is essential for interpreting the LR TB-spline coefficients as control points
and ensuring the convex hull property. Restoration of the partition of unity in the new set of LR TB-splines
can be achieved by a proper scaling, resulting in the so-called weighted LR TB-splines.

Definition 16 (Weighted LR TB-splines). Given a set of LR TB-splines Sp(M j) constructed according to
Definition 13, the set of weighted LR TB-splines satisfies∑

NΞk ,p∈Sp(M j)

Nς
Ξk ,p

(x) :=
∑

NΞk ,p∈Sp(M j)

ςkNΞk ,p(x) = 1, x ∈ Ω,

for some positive weights ςk ∈ R, defined as follows for j = 0, 1, 2, . . .. The initial weights corresponding
to the tensor-product TB-splines on the tensor meshM0 are set to ςk = 1. When we advance refining NΞk ,p305

(with weight ςk) as in Step 2 of Definition 13, the weights ςl1 and ςl2 corresponding to the refined TB-splines
NΞl1 ,p and NΞl2 ,p onM j are updated as

ςli ← ς(i)
k :=

 ν(i)
k ςk, if NΞli ,p < Sp(M j),
ςli + ν(i)

k ςk, if NΞli ,p ∈ Sp(M j),
i = 1, 2. (14)

Due to the structural similarity between the Tchebycheff and the polynomial setting (see Proposition 4),
the LR TB-splines considered in Definitions 13 and 16 enjoy the same properties as polynomial LR B-
splines; see [7, 12]. In particular, from their construction it follows immediately that they are non-negative,310

have minimal support, and the weighted LR TB-splines sum up to one. Unfortunately, LR (T)B-splines are
not always linearly independent. Extensive studies have been conducted to investigate the linear dependency
for polynomial LR B-splines, and several refinement strategies have been proposed to address this issue;
see, e.g., [28, 29, 30]. Similar strategies are also applicable for TB-splines on LR-meshes.

Figure 6 shows some bi-quadratic LR TB-splines obtained from the local space P(50)
2 ⊗P(50)

2 =
〈
1, x1, e50x1

〉
⊗315 〈

1, x2, e50x2
〉

on a given LR-meshM.

3.3. Constructive example

We replicate the example presented in [18, Section 2.2.4] for the local space P(10)
2 ⊗P(10)

2 =
〈
1, x1, e10x1

〉
⊗〈

1, x2, e10x2
〉

of bi-degree p = (2, 2). We start from the open tensor meshM0 given by the global knot vectors
Ξ =

(
(0, 0, 0, 1, 2, 3, 4, 5, 5, 5), (0, 0, 0, 1, 2, 3, 4, 5, 5, 5)

)
; see Figure 7. All the tensor-product TB-splines in320

the set Sp(M0) have weight ςk = 1. In the example we insert two splits and we monitor the evolution of the
weights corresponding to each TB-spline refinement according to Definition 16. Note that the associated
knot insertion procedure in the univariate case has been elaborated in Example 6.

14
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Figure 6: Some bi-quadratic LR TB-splines related to the local space P(50)
2 ⊗ P(50)

2 on a given LR-mesh M. These
splines, visualized along with their contour plots, are tensor products of univariate TB-splines, which are depicted on
the coordinate planes.

15
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Figure 7: Initial tensor meshM0 used to generate the TB-spline set Sp(M0) related to the local space P(10)
2 ⊗ P(10)

2 of
bi-degree p = (2, 2).

First, we introduce a vertical split γ1 = {3} × [1, 5] into M0, resulting in M1. This affects three TB-
splines as illustrated in Figure 8, creating four new refined TB-splines,325

N((0,1,2,4),(1,2,4,5)),(2,2) = N((0,1,2,3),(1,2,4,5)),(2,2) +

(
eα

2eα + 1

)
N((1,2,3,4),(1,2,4,5)),(2,2),

N((1,2,4,5),(1,2,4,5)),(2,2) =

(
eα + 1

2eα + 1

)
N((1,2,3,4),(1,2,4,5)),(2,2) +

(
eα + 1
eα + 2

)
N((2,3,4,5),(1,2,4,5)),(2,2),

N((2,4,5,6),(1,2,4,5)),(2,2) =

(
1

eα + 2

)
N((2,3,4,5),(1,2,4,5)),(2,2) + N((3,4,5,6),(1,2,4,5)),(2,2).

(15)

As a result of the split of N((0,1,2,4),(1,2,4,5)),(2,2) in (15), we achieve two new TB-splines N((0,1,2,3),(1,2,4,5)),(2,2)

and N((1,2,3,4),(1,2,4,5)),(2,2) with the scaling coefficients 1 and
(

eα
2eα+1

)
, respectively. Since both TB-splines

are new and the weight of N((0,1,2,4),(1,2,4,5)),(2,2) from which they split is one, the resulting weight accord-
ing to (14) is the same as their scaling coefficient as shown in Column 2 of Table 1. Next, the split of
N((1,2,4,5),(1,2,4,5)),(2,2) in (15) results in one of the existing TB-splines N((1,2,3,4),(1,2,4,5)),(2,2) with scaling coef-
ficient

(
eα+1
2eα+1

)
. Here the weight of the existing spline is updated according to (14) as presented in Column 3

in Table 1,

ς(1)
2 = ς(2)

1 +

(
eα + 1
2eα + 1

)
· ς2 =

(
eα

2eα + 1

)
+

(
eα + 1

2eα + 1

)
· 1 = 1,

where the existing weight of the TB-spline is
(

eα
2eα+1

)
. Similarly, with the split of N((2,4,5,6),(1,2,4,5)),(2,2) we

complete the primary split step (see Remark 14), resulting in four new TB-splines and their corresponding
weights as tabulated in Column 5 in Table 1.

Proceeding with the secondary split step (see Remark 14) in the refinement process, every new TB-
spline listed in Column 1 in Table 1 is tested against traversal by any existing split inM0. However, there330

are no TB-splines traversed here, hence the set of all TB-splines after the primary split step is the final set
Sp(M1).

Second, we insert a horizontal split γ2 = [1, 5] × {3} intoM1, resulting inM2. This affects four TB-

16
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Mesh M1

N((0,1,2,4),(1,2,4,5)),(2,2) =

N((0,1,2,3),(1,2,4,5)),(2,2) +(
eα

2eα+1

)
N((1,2,3,4),(1,2,4,5)),(2,2)

N((0,1,2,4),(1,2,4,5)),(2,2) =

N((0,1,2,3),(1,2,4,5)),(2,2) +(
eα

2eα+1

)
N((1,2,3,4),(1,2,4,5)),(2,2)

N((1,2,4,5),(1,2,4,5)),(2,2) =(
eα+1
2eα+1

)
N((1,2,3,4),(1,2,4,5)),(2,2) +(

eα+1
eα+2

)
N((2,3,4,5),(1,2,4,5)),(2,2)

Figure 8: Split insertion (Iteration 1): The mesh M1 obtained by inserting a vertical split γ1 = {3} × [1, 5] into
the tensor mesh M0 illustrated in Figure 7, together with all three TB-splines traversed by γ1. The supports of the
TB-splines are highlighted and annotated with the corresponding scaling relation between the original TB-spline and
the two new TB-splines into which it has been refined, with their scaling factors for the local space P(10)

2 ⊗ P(10)
2 of

bi-degree p = (2, 2).

splines as illustrated in Figure 9, creating eight new refined TB-splines,

N((1,2,3,4),(1,2,4,5)),(2,2) =

(
eα + 1

2eα + 1

)
N((1,2,3,4),(1,2,3,4)),(2,2) +

(
eα + 1
eα + 2

)
N((1,2,3,4),(2,3,4,5)),(2,2),

N((1,2,4,5),(0,1,2,4)),(2,2) = N((1,2,4,5),(0,1,2,3)),(2,2) +

(
eα

2eα + 1

)
N((1,2,4,5),(1,2,3,4)),(2,2),

N((1,2,4,5),(2,4,5,6)),(2,2) =

(
1

eα + 2

)
N((1,2,4,5),(2,3,4,5)),(2,2) + N((1,2,4,5),(3,4,5,6)),(2,2),

N((2,3,4,5),(1,2,4,5)),(2,2) =

(
eα + 1

2eα + 1

)
N((2,3,4,5),(1,2,3,4)),(2,2) +

(
eα + 1
eα + 2

)
N((2,3,4,5),(2,3,4,5)),(2,2).

(16)
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Primary split

Nς
Ξ1,2

= Nς
((0,1,2,4),(1,2,4,5)),(2,2) Nς

Ξ2,2
= Nς

((1,2,4,5),(1,2,4,5)),(2,2) Nς
Ξ3,2

= Nς
((2,4,5,6),(1,2,4,5)),(2,2) Final

ς1 = 1 ς2 = 1 ς3 = 1 ςk

Nς
((0,1,2,3),(1,2,4,5)),(2,2) ς(1)

1 = 1 · ς1 1

Nς
((1,2,3,4),(1,2,4,5)),(2,2) ς(2)

1 =
(

eα
2eα+1

)
· ς1 ς(1)

2 = ς(2)
1 +

(
eα+1

2eα+1

)
· ς2 1

Nς
((2,3,4,5),(1,2,4,5)),(2,2) ς(2)

2 =
(

eα+1
eα+2

)
· ς2 ς(1)

3 = ς(2)
2 +

(
1

eα+2

)
· ς3 1

Nς
((3,4,5,6),(1,2,4,5)),(2,2) ς(2)

3 = 1 · ς3 1

Table 1: Split insertion (Iteration 1): The evolution of the weights for the three TB-splines that are traversed by the
split γ1, converting M0 intoM1 and leading to the creation of four new TB-splines, as illustrated in Figure 8. The
scaling relations of the TB-splines that underwent splitting are given in (15). This iteration only involves the primary
split step described in Remark 14 since no TB-splines undergo a secondary split.

Since the created TB-splines as a result of the primary split step are all new and different, their weights335

are the same as their scaling coefficients in (16). We list these eight TB-splines with their corresponding
weights in Column 1 of Table 2. We now proceed with the secondary split step, where the new TB-splines
are tested against traversal by any existing split inM1. It turns out that two of them are traversed by a split.
These two TB-splines are depicted in Figure 10 and lead to

N((1,2,4,5),(1,2,3,4)),(2,2) =

(
eα + 1

2eα + 1

)
N((1,2,3,4),(1,2,3,4)),(2,2) +

(
eα + 1
eα + 2

)
N((2,3,4,5),(1,2,3,4)),(2,2),

N((1,2,4,5),(2,3,4,5)),(2,2) =

(
eα + 1

2eα + 1

)
N((1,2,3,4),(2,3,4,5)),(2,2) +

(
eα + 1
eα + 2

)
N((2,3,4,5),(2,3,4,5)),(2,2).

(17)

After the secondary split step, we arrive at the final set Sp(M2). The resulting weights of the TB-splines in340

this set are tabulated in Table 2.
In conclusion, we want to emphasize that (15), (16), (17) present the two-scale relations for split in-

sertion in an individual TB-spline, however, they do not take into account a possible existing weight of
the TB-spline. The algorithmic evolution of the weights corresponding to each TB-spline after every split
insertion is summarized in Tables 1 and 2.345

4. Isogeometric analysis with LR TB-splines

In this section, we review the standard adaptive scheme for solving differential equations, which com-
prises the four (cyclic) key steps outlined below.

Solve Estimate Mark Refine

Stop

if converged
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Mesh M2

N((1,2,3,4),(1,2,4,5)),(2,2) =(
eα+1

2eα+1

)
N((1,2,3,4),(1,2,3,4)),(2,2) +(

eα+1
eα+2

)
N((1,2,3,4),(2,3,4,5)),(2,2)

N((2,3,4,5),(1,2,4,5)),(2,2) =(
eα+1

2eα+1

)
N((2,3,4,5),(1,2,3,4)),(2,2) +(

eα+1
eα+2

)
N((2,3,4,5),(2,3,4,5)),(2,2)

N((1,2,4,5),(0,1,2,4)),(2,2) =

N((1,2,4,5),(0,1,2,3)),(2,2) +(
eα

2eα+1

)
N((1,2,4,5),(1,2,3,4)),(2,2)

N((1,2,4,5),(2,4,5,6)),(2,2) =(
1

eα+2

)
N((1,2,4,5),(2,3,4,5)),(2,2) +

N((1,2,4,5),(3,4,5,6)),(2,2)

Figure 9: Split insertion (Iteration 2 - Primary split): The mesh M2 obtained by inserting a horizontal split γ2 =

[1, 5]× {3} into the meshM1 illustrated in Figure 8, together with all four TB-splines traversed by γ2. The supports of
the TB-splines are highlighted and annotated with the corresponding scaling relation between the original TB-spline
and the two new TB-splines into which it has been refined, with their scaling factors for the local space P(10)

2 ⊗ P(10)
2

of bi-degree p = (2, 2).

For the first step in the adaptive cycle, we consider the isogeometric Galerkin method based on LR TB-350

splines. For the sake of simplicity, we focus on second-order elliptic differential problems with homoge-
neous Dirichlet boundary conditions. Then, we introduce different marking strategies based on either an
ad hoc approach or a residual-based error estimator, depending on the type of problem we are handling.
Finally, we present the refinement strategy we have incorporated to refine the functions marked as the result
of previous steps in the adaptive cycle.355
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N((1,2,4,5),(1,2,3,4)),(2,2) =(
eα+1
2eα+1

)
N((1,2,3,4),(1,2,3,4)),(2,2) +(

eα+1
eα+2

)
N((2,3,4,5),(1,2,3,4)),(2,2)

N((1,2,4,5),(2,3,4,5)),(2,2) =(
eα+1

2eα+1

)
N((1,2,3,4),(2,3,4,5)),(2,2) +(

eα+1
eα+2

)
N((2,3,4,5),(2,3,4,5)),(2,2)

Figure 10: Split insertion (Iteration 2 - Secondary split): After the primary split step on the meshM2 as depicted in
Figure 9, eight new TB-splines have been created of which two are further traversed by γ1 = {3} × [1, 5]. The supports
of these two TB-splines are highlighted and annotated with the corresponding scaling relation between the original
TB-spline and the two new TB-splines into which it has been refined, with their scaling factors for the local space
P(10)

2 ⊗ P(10)
2 of bi-degree p = (2, 2).

Primary split Secondary split

Nς
((1,2,3,4),(1,2,4,5)),(2,2),N

ς
((1,2,4,5),(0,1,2,4)),(2,2) Nς

Ξ4,2
= Nς

((1,2,4,5),(1,2,3,4)),(2,2) Nς
Ξ5,2

= Nς
((1,2,4,5),(2,3,4,5)),(2,2) Final

Nς
((1,2,4,5),(2,4,5,6)),(2,2),N

ς
((2,3,4,5),(1,2,4,5)),(2,2) ς4 =

(
eα

2eα+1

)
ς5 =

(
1

eα+2

)
ςk

Nς
Ξ1,2

= Nς
((1,2,3,4),(1,2,3,4)),(2,2) ς1 = eα+1

2eα+1 ς(1)
4 = ς1 +

(
eα+1
2eα+1

)
· ς4

3e2α+4eα+1
(2eα+1)2

Nς
Ξ2,2

= Nς
((1,2,3,4),(2,3,4,5)),(2,2) ς2 = eα+1

eα+2 ς(1)
5 = ς2 +

(
eα+1

2eα+1

)
· ς5

2(eα+1)2

2e2α+5eα+2

Nς
Ξ3,2

= Nς
((1,2,4,5),(0,1,2,3)),(2,2) ς3 = 1 1

Nς
Ξ4,2

= Nς
((1,2,4,5),(1,2,3,4)),(2,2) ς4 = eα

2eα+1 Remove Nς
Ξ4,2

0

Nς
Ξ5,2

= Nς
((1,2,4,5),(2,3,4,5)),(2,2) ς5 = 1

eα+2 Remove Nς
Ξ5,2

0

Nς
Ξ6,2

= Nς
((1,2,4,5),(3,4,5,6)),(2,2) ς6 = 1 1

Nς
Ξ7,2

= Nς
((2,3,4,5),(1,2,3,4)),(2,2) ς7 = eα+1

2eα+1 ς(2)
4 = ς7 +

(
eα+1
eα+2

)
· ς4

2(eα+1)2

2e2α+5eα+2

Nς
Ξ8,2

= Nς
((2,3,4,5),(2,3,4,5)),(2,2) ς8 = eα+1

eα+2 ς(2)
5 = ς8 +

(
eα+1
eα+2

)
· ς5

e2α+4eα+3
(eα+2)2

Table 2: Split insertion (Iteration 2): The evolution of the weights for the four TB-splines that are traversed by the
split γ2, convertingM1 intoM2. The primary split step creates eight new TB-splines, as illustrated in Figure 9. The
scaling relations of the TB-splines that underwent splitting are given in (16), and the resulting weights are tabulated
in the first column. Subsequently, when the newly created TB-splines undergo a secondary split, two TB-splines are
further divided as described by the scaling relations given in (17) and illustrated in Figure 10. This table serves to
illustrate the evolving weights of TB-splines across consecutive refinement steps.
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4.1. Isogeometric Tchebycheffian Galerkin method
Let L be a linear second-order elliptic differential operator on the domain Ω ⊂ Rd with Lipschitz

boundary ∂Ω. We consider the differential problemLu = f, in Ω,

u = 0, on ∂Ω,
(18)

whose variational formulation reads as:

find u ∈ V such that a(u, v) = F(v), ∀v ∈ V, (19)

where V is a suitable function space, a : V×V→ R is a bilinear form induced by the considered differential360

operator L, and F : V→ R is a linear form depending on f.
Using the Galerkin method we approximate the solution of (18) based on the weak form (19). We select

a finite-dimensional approximation space on Ω,

W B
〈
ϕ1, ϕ2, . . . , ϕnW

〉
⊂ V, dim(W) = nW, (20)

and we look for
uW ∈W such that a(uW,w) = F(w), ∀w ∈W.

Taking

uW =

nW∑
i=1

ciϕi

leads to a linear system Ac = F, where the matrix A and the vector F are defined as

Ai, j B a(ϕ j, ϕi), i, j = 1, . . . , nW, Fi B F(ϕi), i = 1, . . . , nW. (21)

Selecting different subspaces W results in different Galerkin methods.365

Complying with the isogeometric approach, the fields of interest are described by means of spline basis
functions. The basis functions in (20) are traditionally selected as tensor-product B-splines or NURBS. The
characteristics outlined in Proposition 4 indicate that TB-splines are plug-to-plug compatible with classical
(polynomial) B-splines and turn out to be a good choice as well [31]. Furthermore, the set of LR TB-splines,
as presented in Definition 13, is a suitable choice for incorporating adaptive refinement.370

Let us select a space of bivariate LR Tchebycheffian splines as the approximation space in (20),

W = Sp(M) =
〈
NΞk ,p ∈ Sp(M)

〉
. (22)

This space is spanned by the set of TB-splines Sp(M) related to the local space PW1
p1 ⊗ PW2

p2 of bi-degree
p = (p1, p2) with maximal smoothness and roots W1 and W2 corresponding to the ECT-spaces in each
parametric direction; see Definition 13. These TB-splines are constructed on an LR-meshM defined on the
domain Ω = [0, 1]2.375

The univariate building blocks for our basis functions are univariate TB-splines identified by ECT-
spaces of the form (5). They offer a diverse array of algebraic polynomial, exponential, and trigonometric
function combinations, equipped with a wide spectrum of shape parameters. Properly selecting the space’s
structure, incorporating various function types, along with appropriate shape parameters, is of vital im-
portance to effectively harness the capabilities of the ECT-spaces. An in-depth study for the selection of380

ECT-spaces has been presented in [31, Section 3.2] based on an (automatic) problem-driven strategy.
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4.2. Adaptive strategy
Ever since the advent of polynomial LR B-splines, a prominent issue under discussion has been the

quest for an optimal refinement strategy that aligns with objectives such as achieving linear independence,
ensuring mesh quality, and accommodating grading and shape regularities. The same issue arises in the LR385

TB-spline setting. Thanks to the structural similarities between polynomial B-splines and TB-splines, the
refinement strategies developed for polynomial LR B-splines are also applicable for LR TB-splines.

4.2.1. Local refinement strategy
We adopt the local refinement strategy introduced for polynomial LR B-splines in [18, Section 4.2]

and known as structured mesh refinement. As opposed to the classical finite element method, in structured390

mesh refinement we select the LR TB-splines contributing most to the approximation error rather than the
box-partition elements contributing most to the error and refine those LR TB-splines. This approach proves
to be a more sensible choice since in LR-mesh refinement any newly inserted split must traverse the support
of at least one LR TB-spline.

The structured mesh refinement is a dyadic refinement where all selected LR TB-splines are refined by395

halving all of the intervals in their local knot vectors, resulting in the insertion of a net of splits (located
in the TB-spline supports) in accordance with Definition 13 (see also Algorithm 1 in Appendix A). An
LR-mesh obtained with the structured mesh refinement strategy is called a structured LR-mesh.

Figure 11 illustrates an example of (three iterations of) structured mesh refinement for LR TB-splines of
bi-degree p = (2, 2). Specifically, Figure 11 (c) exhibits how the maximal smoothness is maintained in the400

LR-meshes across the meshlines. If the split already partially exists in the mesh then instead of increasing
the multiplicity of already existing meshlines, we only elongate it to traverse the complete support of the
marked TB-spline. And if the split already exists completely then instead of increasing the multiplicity of
the corresponding meshlines, we neglect that split insertion, staying true to the configuration of LR-meshes
with fixed multiplicity of 1 for all internal meshlines (as assumed in Section 3.1).405

Remark 17. One of the shortcomings of the structured mesh strategy is that it might produce a linearly
dependent set of LR (T)B-splines. Many efforts have been made to achieve linear independence of LR B-
splines. One of the suggested solutions was achieving local linear independence on each element in the
mesh by enforcing the non-nested support (N2S) property; see [7, 30]. These LR B-splines possess nice
properties, such as410

• the number of non-zero LR B-splines over an element σ is (p1 + 1)(p2 + 1),

• they span the full local spline space,

• they form a partition of unity, without the use of scaling weights.

Besides the function-based refinement strategies, there are also some box-based strategies, similar to the
classical finite element approach, where the elements contributing the most to the error are selected for415

refinement. These strategies are hierarchical locally refined (HLR) meshing [7] and effective grading (EG)
refinement [28], which produce LR-meshes with good grading while ensuring local linear independence.
All of the aforementioned refinement strategies are developed for polynomial B-splines on LR-meshes, but
are also applicable for LR TB-splines. It should be noted, however, that prioritizing the local linear inde-
pendence of the LR (T)B-splines imposes many constraints on the refinement strategy. On the other hand,420

with the structured mesh refinement the generated meshes, at least in the region away from the boundary,
are locally tensor meshes. Hence, the LR (T)B-splines defined in these zones of the mesh behave like the
standard (T)B-splines and are locally linearly independent.
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(a) Iteration 1 (b) Iteration 2

(c) Iteration 3 (d) Final mesh

Figure 11: Example of structured mesh refinement for LR TB-splines of bi-degree p = (2, 2). Figure (a), left: Initial
tensor mesh M0, with highlighted the support of the LR TB-spline to be refined. Figure (a), right: Set of splits to
be inserted to accomplish structured mesh refinement, halving each interval in the support of the marked TB-spline.
Figure (b): Refined LR-meshM1 after the first iteration, with highlighted the supports of the two LR TB-splines to be
refined in Iteration 2 and the set of splits to be inserted in this iteration. Figure (c), left: Refined LR-meshM2 after the
second iteration, with highlighted the supports of the two LR TB-splines to be refined in Iteration 3. Here the marked
TB-splines have a different knot resolution. Figure (c), right: Illustration of how to maintain the multiplicity of the
meshlines to one in the mesh. If the split to be inserted already partially exists in the mesh then it is only extended for
the remaining part of the support of the TB-spline to be refined. Figure (d): Final LR-meshM3 obtained.

4.2.2. Marking strategy
After discussing the Solve and Refine steps in the adaptive cycle, we now focus on the remaining425

Estimate and Mark steps. As explained in Section 4.2.1, the structured mesh refinement strategy is based on
refining LR TB-splines, hence we need to mark the TB-splines contributing maximally to the approximation
error. This is estimated by two different strategies listed below.

• Problem-oriented ad hoc refinement: This method involves leveraging a priori knowledge about the
problem’s behavior. By understanding the problem’s geometric feature and identifying specific re-430

gions in the domain that require refinement, we can selectively mark functions with support in those
areas.

• Error-based automatic refinement: This method uses the residual-based error indicator in the L2-
norm. Assuming we have computed the discrete solution uW of the model problem (18), the error
indicator ησ on an element σ within an LR-meshM is given by435

ησ := ‖f − LuW‖L2(σ). (23)

This quantity is defined element-wise, while we need to mark basis functions for the structured mesh
refinement strategy. Therefore, we first mark elements with high error and then mark all the TB-
splines that have support over those elements. Our element selection is based on a proper threshold

23

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4761823

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed



criterion,
ησ ≥ ψ ·max

σ̂
ησ̂, ψ ≥ 0. (24)

The marking parameter ψ facilitates refinement in the spectrum from global refinement to no refine-440

ment at all by selecting ψ = 0 and ψ > 1, respectively. Note that the proportion of elements marked
can vary with each step since the computation of the threshold depends only on the magnitude of the
maximum of the error, without considering the distribution of estimated errors.

Remark 18. As an alternative to marking elements with errors exceeding a certain threshold as in (24), we
can also label a specific percentile of elements based on their error distribution. In this paper, we just use445

the criterion defined in (24) and maintain the same value for the marking parameter ψ across all iterations.
This choice is made because the nature of all the case studies discussed in Section 5 involves small regions
with substantial error magnitudes. Consequently, this strategy effectively restricts the refinement region to
a minimum extent.

5. Numerical results450

In this section, we present some case studies using LR TB-splines in isogeometric Galerkin discretiza-
tions of second-order problems. In all case studies, the approximation spaces are taken as bivariate Tcheby-
cheffian spline spaces of the form (22) over LR-meshes, related to the local space PW1

p1 ⊗ P
W2
p2 of bi-degree

p = (p1, p2) with roots W1 and W2 corresponding to each parametric direction. The LR-mesh refinement is
carried out with the structured mesh refinement strategy described in Section 4.2.1. The initial meshM0 is
a tensor mesh that partitions the domain with m + 1 equidistant breakpoints, i.e., the distance between two
consecutive breakpoints is h0 = 1/m. Given that the structured mesh refinement follows a dyadic pattern,
the minimum distance between two consecutive meshlines along one parametric direction for each iteration
of refinement advances as

h` = h`−1/2, ` = 1, 2, . . . .

We focus on the general second-order problem of the form−∇ · (κ∇u) + a · ∇u + c u = f, in Ω = (0, 1)2,

u = g, on ∂Ω,
(25)

where a is the advection flow velocity, κ the diffusivity, c the reaction coefficient, f the prescribed source
function, and g the Dirichlet boundary function.

As usual, homogeneous boundary conditions are satisfied pointwise exactly. In the non-homogeneous
case, the boundary function is approximated in the underlying LR Tchebycheffian spline space by a suit-455

able approximation strategy (e.g., least-squares approximation or quasi-interpolation) and subsequently the
reduction to the homogeneous case is considered, so dealing again with a special instance of the problem
(18). It is important to remark that, when discontinuous Dirichlet boundary conditions are involved, a proper
boundary treatment is imperative. In such a case, in order to avoid oscillations along the boundary, we ap-
proximate the boundary function by means of the shape-preserving Schoenberg operator (see [21, 33]), i.e,460

we consider the linear combination of the boundary TB-splines whose coefficients are obtained by evaluat-
ing the boundary function at the corresponding Greville abscissae (assuming that linear polynomials belong
to the ECT-space of interest).

For the (numerical) computation of the integrals required in the construction of the linear system in (21),
we employ element-wise Gaussian quadrature rules. The choice of quadrature points for discretizations465

24

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4761823

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed



(a)M0 (dof = 100) (b)M2 (dof = 604) (c)M4 (dof = 2538)

Figure 12: Case study 1. Some LR-meshes for the solution of the Poisson problem in (26), obtained with an ad hoc
refinement strategy. The corresponding number of degrees of freedom (dof) for bi-degree p = (2, 2) are mentioned.

involving TB-splines is a non-trivial task, often necessitating quadrature rules of higher order compared to
those used for classical polynomial splines. In all case studies presented we use 5p quadrature points in
each element for LR TB-splines consisting of exponential functions with large shape parameters.

5.1. Case study 1: Poisson problem
In this case study we address a Poisson problem commonly used in the literature as a benchmark for470

adaptive refinement schemes; see [18, 30]. We consider (25) with κ = 1, c = 0, a = 0, and f obtained from
the exact solution

u(x1, x2) = arctan
(
100

( √
(x1 − 1.25)2 + (x2 + 0.25)2 −

π

3

))
. (26)

While the problem may seem mathematically smooth since we are just solving for the Laplacian of the
analytical solution, the highly varying right-hand side introduces complexity in the solution. The solution
has rapid changes across the arc of the circumference475

(x1 − 1.25)2 + (x2 + 0.25)2 = (π/3)2, (27)

traversing the domain Ω = [0, 1]2 and resulting into an internal sharp layer.
In the literature, bi-quadratic polynomial splines are prominently used for the computation of approx-

imate solutions of this problem. Here, we select Tchebycheffian splines of the same degree to prove the
efficacy of Tchebycheffian splines. Since the problem exhibits an internal sharp layer, a Tchebycheffian
spline space with exponential functions (with suitable parameters) is a good choice. Following (5), we take
the local space as

P(α,−α)
2 ⊗ P(α,−α)

2 =
〈
1, eαx1 , e−αx1

〉
⊗

〈
1, eαx2 , e−αx2

〉
, with α = 10.

We use an ad hoc refinement strategy as outlined in Section 4.2.2, where we utilize a priori knowledge
about the problem to identify the specific regions in the domain that require refinement. More precisely,
we mark the TB-splines that have support touching/overlapping the arc (27) and refine them according to
the structured mesh refinement strategy. The plots of some LR-meshes are illustrated in Figure 12 and an480

approximate solution is visualized in Figure 13.
Figure 14 illustrates the convergence of the error in L∞-norm, computed by sampling the approximate

and exact solutions on a uniform grid consisting of 1001 points along each direction in the domain. We
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Figure 13: Case study 1. Plot of the approximate solution (right) for the Poisson problem with exact solution (26),
obtained by LR TB-splines related to the local space P(10,−10)

2 ⊗ P(10,−10)
2 on the meshM5 with dof = 5101 (left).

h` dof P(10,−10)
2 ⊗ P(10,−10)

2 P2 ⊗ P2

1/8 100 1.5873929998 7.9295697929

1/16 277 0.6163964505 1.7534324399

1/32 604 0.2982445346 0.3859733442

1/64 1249 0.0937572015 0.0961967520

1/128 2538 0.0139797634 0.0139829152

1/256 5101 0.0012123306 0.0012128007

Table 3: Case study 1. Comparison of the L∞ error for the Poisson problem with exact solution in (26) when consider-
ing TB-splines and B-splines of bi-degree p = (2, 2) on a sequence of LR-meshes, obtained with an ad hoc refinement
strategy, some of them are illustrated in Figures 12 and 13.

assess the convergence rates of Tchebycheffian splines in comparison to classical polynomial splines on
LR-meshes, starting from a coarse tensor mesh with h0 = 1/8 to h5 = 1/256 after five iterations of local485

refinement. We also compare the results of their tensor mesh counterpart with the same resolution. The plot
clearly shows that the approximate solution obtained by TB-splines on LR-meshes converges faster than
their tensor mesh equivalent of the same resolution. Table 3 shows the L∞-error for all LR-mesh iterations
and it highlights smaller error for TB-splines compared to B-splines for spaces of equivalent dimension,
especially on the coarser meshes.490

5.2. Case study 2: Reaction-diffusion problem
Here we solve a reaction-diffusion problem (25) on a square, with

κ = 10−3, c = 1, a = 0, f = 0; (28)

see [1, 25]. The boundary condition for this problem is set to zero except near the corners as illustrated
in Figure 15 (left). The treatment of this discontinuous Dirichlet boundary condition is carried out with a
Schoenberg quasi-interpolant.495
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LR B-splines
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Figure 14: Case study 1. Convergence plot of the L∞ error for the Poisson problem with exact solution in (26) when
considering TB-splines and B-splines of bi-degree p = (2, 2) on tensor meshes and LR-meshes.

u = 0

u = 0

u = 0

u = 0

u = 1

u = 1

u = 1

u = 1

l = 0.1

Figure 15: Case study 2. Left: The domain Ω = [0, 1]2 with the Dirichlet boundary conditions, where all corners are
set to u = 1 up to the length l = 0.1 (red) and the rest of the boundary is set to u = 0. Right: Plot of an approximate
solution for the reaction-diffusion problem specified in (28), which is computed on a very fine tensor mesh with B-
splines of bi-degree p = (3, 3) with h = 1/1000 and dof = 1006009. We use this solution as a reference to compare
the other results in this case study.

The dominance of reaction over diffusion is defined by the Damköhler number, defined as the ratio of
the reaction coefficient (c) to the diffusion coefficient (κ). In this case study, the system is strongly reaction
dominated, as the Damköhler number is 103. Therefore, we expect the solution to be zero throughout the
domain, except near the corners, where enforcing the boundary condition rapidly spikes the solution to one.

The approximate solution belonging to a polynomial spline space tends to exhibit spurious oscillations
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around the jump, unless the discretization is fine enough. Using locally refined structures can help with
suppressing the oscillations and resolve the spikes near the corners. In addition, the Tchebycheffian spline’s
ability in capturing sharp layers can further reduce such spurious oscillations, without refining too much.
Therefore, we select again a Tchebycheffian spline space with exponential functions, where the local space
is given by

P(α,−α)
3 ⊗ P(α,−α)

3 =
〈
1, x1, eαx1 , e−αx1

〉
⊗

〈
1, x2, eαx2 , e−αx2

〉
, with α = 35.

We use a residual-based error indicator to guide the local refinement. Given that f = 0, the element-wise500

error estimator in (23) becomes
ησ = ‖∇ · (κ∇uW) − c uW‖L2(σ), (29)

and we set the marking parameter to ψ = 0.95 in the marking criterion (24).
In the absence of an explicit expression for the exact solution of this problem, we check the accuracy of

the approximate solutions by comparing them with a high-fidelity B-spline solution. This B-spline solution,
depicted in Figure 15 (right), is computed on a tensor mesh with an element size of h = 1/1000, with505

B-splines of bi-degree p = (3, 3) and dof = 1006009. The contour plots in Figure 16 illustrate the error in
solutions obtained by LR TB-splines and LR B-splines, both with respect to the reference B-spline solution,
along with the LR-meshes on which the system is solved. The approximate solutions are evaluated on a
uniform grid of 2001 × 2001 points. Analyzing the contour plots, it shows that LR TB-spline solutions
exhibit smaller oscillation areas, and the magnitude of these oscillations is also reduced, especially on the510

coarser meshes. This comparison confirms the capability of TB-splines in capturing sharp layers while
eliminating unwanted spurious oscillations.

5.3. Case study 3: Advection-diffusion problem

In this case study we consider a standard benchmark problem with advection flow skew to any paramet-
ric direction [15, 24, 39, 31]. We solve an advection-diffusion problem (25) on a square, with515

κ = 1, c = 0, a = a (cos(θ), sin(θ))T , θ =
π

4
, a = 104, f = 0, (30)

and the discontinuous Dirichlet boundary conditions as shown in Figure 17. The jump in the boundary con-
ditions at the point (0, 0.2) creates an inner sharp layer aligned with the advection flow direction identified
by (cos(θ), sin(θ)). Additionally, the solution also exhibits a sharp boundary layer.

In advection-diffusion problems, the dominance of advection over diffusion is defined by the global
Péclet number

Peg B
‖a‖
κ
.

This problem is advection-dominated since the Péclet number is Peg = a = 104. Such problems tend
to exhibit spurious oscillations in their approximate solutions when polynomial splines are used, until the520

discretization is fine enough to resolve the sharp layers featured by the exact solution. A common practice
to overcome this issue is to use stabilization methods such as the SUPG and GLS method; see [9, 16].
While these stabilization methods effectively eliminate spurious oscillations, it is also important to note that
they tend to “smooth out” the layers featured by the exact solution. Moreover, their effectiveness is hugely
dependent on the choice of some parameters appearing in the various stabilization methods. It has been525

showcased in [31] that Tchebycheffian splines can offer a flexible alternative for such advection-dominated
problems without the need for stabilization and better localization of boundary and internal layers.
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M P(35,−35)
3 ⊗ P(35,−35)

3 P3 ⊗ P3

M0 (dof = 169)

M1 (dof = 505)

M2 (dof = 889)

M3 (dof = 1621)

-0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1

Figure 16: Case study 2. Some LR-meshes for the solution of the reaction-diffusion problem specified in (28), where
the refinement is guided by the residual-based error indicator in (29) with marking parameter ψ = 0.95, along with the
contour plots of the error in solutions obtained by TB-splines and B-splines of bi-degree p = (3, 3), both with respect
to the reference solution shown in Figure 15.
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u = 1

u = 0

u = 0

u = 0

(0, 0.2)

u = 1

θ

internal layer

boundary layers

Figure 17: Case study 3. The domain Ω = [0, 1]2 with the Dirichlet boundary conditions, the sharp internal layer (red)
generated along the advection flow at angle θ and the boundary layers (red).

To capture the sharp layers of the problem specified in (30), an adequate choice of Tchebycheffian spline
space contains exponential functions with suitable parameters [31]. These parameters are dependent on the
components of the advection flow velocity in the two parametric directions, given as530

P(a cos(θ))
4 ⊗ P(a sin(θ))

4 =
〈
1, x1, (x1)2, (x1)3, ea cos(θ)x1

〉
⊗

〈
1, x2, (x2)2, (x2)3, ea sin(θ)x2

〉
. (31)

For the adaptive refinement we use the ad hoc refinement strategy described in Section 4.2.2. Since we
expect the internal and boundary layers to be sharp, we can refine along these layers. Figure 18 illustrates
the LR-mesh M2 for p = (4, 4) obtained with this ad hoc strategy after two iterations, along with the
approximate solutions using the LR TB-spline space related to the local space (31) and the LR B-spline
space on the mesh M2. Since this mesh is not fine enough, the solution with plain LR B-splines would535

exhibit huge spurious oscillations. Hence, it is necessary to use stabilization in the LR B-spline solution
to have a comparable solution against the unstabilized LR TB-spline solution. The discontinuous Dirichlet
boundary condition in all the cases is imposed by the Schoenberg quasi-interpolant.

For comparison, we also solve the same problem with B-splines on an LR-mesh after many refinement
steps to obtain a fine enough mesh such that the stabilization of the solution is not required anymore. The540

resulting meshM6 is presented in Figure 19, where the mesh is obtained using the same ad hoc refinement
strategy as described before for p = (4, 4).

Table 4 summarizes the values of maximal over- and undershoot in the neighborhood of the layers
evaluated on a uniform grid of 3001 × 3001 points along each direction for the different setups of the
meshes and spline spaces, together with the resolution of the mesh h` and the number of degrees of freedom545

(dof).
The approximate solution with LR TB-splines on an LR-mesh gives a similar result compared to the

TB-spline solution on a tensor mesh with the same h2 = 1/128, showing that the use of an LR-mesh for
TB-splines results in the same level of accuracy with fewer degrees of freedom (about 2.5 times fewer
in this case). The stabilized LR B-spline solution on mesh M2 does eliminate the spurious oscillations550

but the corresponding solution is too smooth, resulting in a poor localization of the internal and boundary
layers. On the other hand, the unstabilized LR B-spline solution on a very fine meshM6 localizes the layers
accurately but at a very high cost. In conclusion, TB-splines on an LR-mesh are able to eliminate spurious
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TB-spline space Local refinement SUPG stabilization h` dof max min

P(a cos(θ))
4 ⊗P(a sin(θ))

4 Yes No 1/128 6957 1.0058 −6.5089×10−3

P(a cos(θ))
4 ⊗P(a sin(θ))

4 No No 1/128 17424 1.0059 −6.5036×10−3

P4 ⊗ P4 Yes Yes 1/128 6957 1.0019 −1.6772×10−3

P4 ⊗ P4 Yes No 1/2048 121283 1.0071 −1.3056×10−3

Table 4: Case study 3. Comparison of maximum and minimum of the TB-spline solution (without stabilization)
against the B-spline solution (with SUPG stabilization) on the same LR-mesh M2 as in Figure 12, the B-spline
solution (without stabilization) on the very fine LR-meshM6 as in Figure 19, and the TB-spline solution on a tensor
mesh of the same resolution as inM2 for p = (4, 4) and a = 104.

oscillations without the need for stabilization in the approximate solution, while still capturing the sharp
layers precisely.555

6. Conclusion

Polynomial splines are smooth piecewise functions with pieces belonging to algebraic polynomial
spaces. Replacing the algebraic polynomial spaces with E(C)T-spaces gives rise to the rich universe of
Tchebycheffian splines. Most of the results known for polynomial splines extend in a natural way to the
Tchebycheffian setting. In particular, under suitable assumptions, Tchebycheffian splines can be repre-560

sented in terms of TB-splines, basis functions with similar properties to the classical polynomial B-splines.
Multivariate versions of TB-splines can be easily obtained by taking tensor products and popular local re-
finement technologies, based on local tensor products, can also be applied in the Tchebycheffian setting.
For example, the knot insertion procedure allows for defining LR TB-splines as a natural generalization of
LR B-splines.565

In this paper we have been focusing on Tchebycheffian splines whose pieces belong to null-spaces
of constant-coefficient linear differential operators. Although this is a more restricted class, it offers the
freedom of combining algebraic polynomial, exponential, and trigonometric functions, thus providing a
large family of approximation spaces for isogeometric methods that are flexible and effective both from the
analytical and geometrical point of view. They can be identified according to problem-oriented selection570

strategies [31]. Moreover, the corresponding (LR) TB-splines can be easily incorporated in any software
library supporting polynomial (LR) B-splines to enrich its capability, thanks to efficient evaluation and
manipulation routines recently developed for this class [38].

LR TB-splines are a viable spline technology on unstructured meshes and offer a valid alternative to
classical LR B-splines in adaptive isogeometric analysis. We have shown that the adaptive strategy com-575

bined with problem-oriented approximation spaces may create a synergistic effect and may produce results
of similar quality with less levels of refinement, and so fewer degrees of freedom, without the need for
possible stabilization, compared to the polynomial setting.

The complete structural similarity with the polynomial case also implies that LR TB-splines suffer from
the same weaknesses as their polynomial counterpart. For example, LR TB-splines might be (locally)580

linearly dependent; see also Remark 17. Common refinement strategies proposed in the literature, such as
the minimum span, full span, and structured refinement [18, 37], do not ensure linear independence of the
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(a) LR-meshM2 for p = (4, 4) with h2 = 1/128 and dof = 6957 obtained with ad-hoc refinement strategy.

(b) TB-spline space: P(a cos(θ))
4 ⊗ P(a sin(θ))

4 .

(c) B-spline space: P4 ⊗ P4 with SUPG stabilization.

0 0.2 0.4 0.6 0.8 1

Figure 18: Case study 3. Plot of the LR-meshM2 and the corresponding approximate solutions using different TB-
spline spaces of p = (4, 4) for the advection-diffusion problem specified in (30) with advection skew at θ = 45◦ and
global Péclet number Peg = 104.
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0 0.2 0.4 0.6 0.8 1

Figure 19: Case study 3. Plot of the LR-meshM6 of p = (4, 4) with h6 = 1/2048 and dof = 121283, obtained with ad
hoc refinement, and the corresponding approximate solution using the B-spline space (i.e., the local space is P4 ⊗ P4)
without SUPG stabilization for the advection-diffusion problem specified in (30) with advection skew at θ = 45◦ and
global Péclet number Peg = 104.

LR B-splines. The so-called peeling algorithm can be adopted to remove redundant basis functions [12, 29]
but refinement strategies ensuring linear independence are strongly preferred, both from the theoretical
and algorithmic point of view. A complete characterization of linear independence for LR B-splines is585

still not known, but there exist features of the underlying LR mesh, like the so-called non-nested support
(N2S) property [7], that guarantee the stronger property of local linear independence. Refinement strategies
ensuring the N2S property for LR B-splines have been proposed in [8, 28, 30]. It is likely the case that
the structural similarity paves again the path for an extension of the above properties from the polynomial
to the Tchebycheffian setting. This can be an interesting topic for future investigation. In particular, the590

identification of refinement strategies ensuring (local) linear independence for LR (T)B-splines, not relying
on peculiar properties of algebraic polynomials but only on structural properties of the involved spaces, may
provide further insights and understandings of the LR paradigm, also in the polynomial case.
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Appendix A. LR TB-spline refinement algorithm

The splitting procedure described in Step 2 of Definition 13 can be subdivided into primary and sec-
ondary splits according to Remark 14. The corresponding implementation of LR TB-splines is summarized
in Algorithm 1.

Algorithm 1: LR TB-spline refinement

Input : Sp(M j−1) TB-spline set
γ j Split

Output: Sp(M j) Refined TB-spline set

1: Sp(M j)← Sp(M j−1) and Ŝp(M j)← ∅;
/* Primary split: */

2: Extend γ j by any existing split inM j−1 that intersects and is collinear with γ j;
3: for every TB-spline NΞk ,p ∈ Sp(M j−1) do
4: if γ j traverses support of NΞk ,p then
5: Refine NΞk ,p and compute splitting coefficients ν(1)

k , ν(2)
k from (11);

6: Update the weights according to (14);
7: Remove NΞk ,p from Sp(M j) and add new TB-splines to Sp(M j) and Ŝp(M j);
8: end
9: end

/* Secondary split: */

10: while Ŝp(M j) is non-empty do
11: for every TB-spline NΞk ,p ∈ Ŝp(M j) do
12: for every existing split γ` inM j−1 do
13: if γ` traverses support of NΞk ,p then
14: Refine NΞk ,p and compute splitting coefficients ν(1)

k , ν(2)
k from (11);

15: Update the weights according to (14);
16: Remove NΞk ,p from Sp(M j) and add new TB-splines to Sp(M j) and Ŝp(M j);
17: end
18: end
19: Remove NΞk ,p from Ŝp(M j);
20: end
21: end

605
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